Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs

نویسندگان

  • Johannes H. Hattingh
  • Elizabeth Jonck
  • Ernst J. Joubert
  • Andrew R. Plummer
چکیده

Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of V − S is adjacent to a vertex in V − S. A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The total restrained domination number of G (restrained domination number of G, respectively), denoted by γtr(G) (γr(G), respectively), is the smallest cardinality of a total restrained dominating set (restrained dominating set, respectively) of G. We bound the sum of the total restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds. It is known (see [3]) that if G is a graph of order n ≥ 2 such that both G and G are not isomorphic to P3, then 4 ≤ γr(G)+γr(G) ≤ n+2. We also provide characterizations of the extremal graphs G of order n achieving these bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

On Roman, Global and Restrained Domination in Graphs

In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...

متن کامل

Edge Domination in Intuitionistic Fuzzy Graphs

In this paper we introduce the concept of edge domination and total edge domination in intuitionistic fuzzy graphs. We determine the edge domination number and total edge domination number for several classes of intuitionistic fuzzy graphs and obtain bounds for them. We also obtain Nordhaus gaddum type results for the parameters.

متن کامل

Results on Total Domination and Total Restrained Domination in Grid Graphs

A set S of vertices in a graph G(V,E) is called a total dominating set if every vertex v ∈ V is adjacent to an element of S. A set S of vertices in a graph G(V,E) is called a total restrained dominating set if every vertex v ∈ V is adjacent to an element of S and every vertex of V − S is adjacent to a vertex in V − S. The total domination number of a graph G denoted by γt(G) is the minimum card...

متن کامل

On the total restrained domination edge critical graphs

Let G = (V, E) be a graph. A set D ⊆ V is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in V −D has a neighbor in V −D. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number of G. In this paper, we define the concept of total restrained domination edge critical graphs, find a lower bound for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008